1΄ ΤΑΞΗ 6ου ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ ΚΑΛΑΜΑΤΑΣ/2014-2015

Η ΨΗΦΙΑΚΗ ΜΑΣ ΤΑΞΗ

ΣΤ2΄ ΤΑΞΗ
6ου ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ ΚΑΛΑΜΑΤΑΣ/2018-2019














Παρασκευή, 15 Φεβρουαρίου 2013

ΚΡΙΤΗΡΙΑ ΔΙΑΙΡΕΤΟΤΗΤΑΣ ΤΟΥ 2, ΤΟΥ 5 ΚΑΙ ΤΟΥ 10



ΚΡΙΤΗΡΙΑ ΔΙΑΙΡΕΤΟΤΗΤΑΣ ΤΟΥ 2, ΤΟΥ 5 ΚΑΙ ΤΟΥ 10

Για να διακρίνουμε εύκολα και γρήγορα αν ένας ακέραιος αριθμός διαιρείται ακριβώς από έναν άλλο, χρησιμοποιούμε ορισμένους κανόνες που ονομάζουμε κριτήρια διαιρετότητας.
  • Ένας ακέραιος διαιρείται ακριβώς με το 2, αν το τελευταίο του ψηφίο είναι 0 ή 2 ή 4 ή 6 ή 8(δηλαδή ζυγός αριθμός)
  • Ένας ακέραιος διαιρείται ακριβώς με το 5, αν το τελευταίο του ψηφίο είναι 5 ή 0
  • Ένας ακέραιος διαιρείται ακριβώς με το 10, αν το τελευταίο του ψηφίο είναι 0
Καλό θα είναι να μάθεις τα κριτήρια διαιρετότητας για όλους τους αριθμούς. Και συγκεκριμένα:
  • Ένας ακέραιος διαιρείται ακριβώς με το 3, όταν το άθροισμά των ψηφίων του είναι 3 ή 6 ή 9
Παράδειγμα: ο αριθμός 174 διαιρείται με το 3 γιατί 1+7+4=12(2+1=3), ο 969 το ίδιο γιατί 9+6+9=24(2+4=6) κλπ.
  • Ένας ακέραιος διαιρείται ακριβώς με το 4, όταν τα δυο τελευταία του ψηφία διαιρούνται με το 4
Π. χ. Ο 324 διαιρείται με το 4, γιατί και το 24(δύο τελευταία)είναι διαιρετό από το 4
  • Ένας ακέραιος διαιρείται ακριβώς με το 6 αν είναι ταυτόχρονα διαιρετός και με το 2 και με το 3
Π. χ. Ο 678 είναι διαιρετός από το 6 γιατί διαιρείται και με το 2(ζυγός) και με το 3(6+7+8=21=2+1=3)
  • Ένας ακέραιος διαιρείται ακριβώς με το 8, όταν οι 3 τελευταίοι αριθμοί σχηματίζουν αριθμό που διαιρείται με το 8
Π. χ. Ο 7.368 διαιρείται ακριβώς με το 8 γιατί και ο 368 διαιρείται με το 8
  • Ένας ακέραιος διαιρείται ακριβώς με το 9, όταν το άθροισμα των ψηφίων του δίνει 9.
Π. χ. Ο 351 διαιρείται ακριβώς με το 9 γιατί 3+5+1=9. Το ίδιο και ο 459 γιατί 4+5+9=18(8+1=9)

ΕΞΑΣΚΗΣΗ ΚΛΙΚ                       
πηγή  Εγκύκλιος Παιδεία



(Για να μεταβείτε στην εφαρμογή κάντε κλικ στην εικόνα)
Πηγή: www.skoool.gr


ΚΑΤΙ ΠΑΡΑΠΑΝΩ...

Κριτήριο διαιρετότητας για το 7 !!!



   Για να εξετάσουμε αν ένας φυσικός αριθμός είναι πολλαπλάσιο του 7 αρκεί να διαγράψουμε το τελευταίο ψηφίο  του και  να αφαιρέσουμε από τον αριθμό το διπλάσιο του ψηφίου που διαγράψαμε. Ο αριθμός που προκύπτει  είναι  πολλαπλάσιο του 7 αν και μόνο αν ο αρχικός αριθμός είναι πολλαπλάσιο του 7. Συνεχίζουμε την διαδικασία μέχρι να καταλήξουμε σε διψήφιο αριθμό όπου από την προπαίδεια θα γνωρίζουμε αν είναι ή όχι πολλαπλάσιο του 7 .
Ας το διασαφηνίσουμε με ένα παράδειγμα:
Επιλέγουμε  τυχαία ένα αριθμό   412734.
Διαγράφουμε το τελευταίο ψηφίο του 412734  και αφαιρούμε το διπλάσιο του τελευταίου ψηφίου του :     41273-(2x4)= 41273-8= 41265
Επαναλαμβάνουμε:
  • Διαγράφουμε το τελευταίο ψηφίο του  41265 και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου  ψηφίου του   :    4126-(2x5)= 4126-10=4116.
  • Διαγράφουμε το τελευταίο ψηφίο του  4116   και αφαιρούμαι το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του :     411 -(2x6)= 411 - 12=399
  • Διαγράφουμε το τελευταίο ψηφίο του 399  και αφαιρούμε το διπλάσιο του τελευταίου διαγραμμένου ψηφίου του  :         39 -(2x9)= 39 -18=21
Το 21  είναι πολλαπλάσιο του 7  άρα και ο αρχικός αριθμός   412734 είναι πολλαπλάσιο του 7 .


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου